Clase 1 (Logica Matematicas)


Lógica matemática

La lógica matemática, también llamada lógica simbólica, lógica teorética, lógica formal, o logística,1​ es parte tanto de la lógica como de la matemática, y consiste en el estudio matemático de la lógica, y en la aplicación de dicho estudio a otras áreas de la matemática y de las ciencias. La lógica matemática tiene estrechas conexiones con las ciencias de la computación y con la lógica filosófica.




La lógica matemática estudia los sistemas formales en relación con el modo en el que codifican o definen nociones intuitivas de objetos matemáticos como conjuntos, números, demostraciones, y algoritmos, utilizando un lenguaje formal. La lógica matemática se suele dividir en cuatro subcampos: teoría de modelos, teoría de la demostración, teoría de conjuntos y teoría de la recursión. La investigación en lógica matemática ha jugado un papel fundamental en el estudio de las matemáticas. La lógica matemática no es la «lógica de las matemáticas» sino la «matemática de la lógica». 

Incluye aquellas partes de la lógica que pueden ser modeladas y estudiadas matemáticamente. La lógica matemática comprende dos áreas de investigación distintas: la primera es la aplicación de las técnicas de la lógica formal a las matemáticas y el razonamiento matemático y la segunda, en la otra dirección, la aplicación de técnicas matemáticas a la representación y el análisis de la lógica formal. Si la teoría de la demostración y la teoría de modelos han sido el fundamento de la lógica matemática, no han sido más que dos de los cuatro pilares del sujeto. 

La teoría de conjuntos se originó en el estudio del infinito por Georg Cantor y ha sido la fuente de muchos de los temas más desafiantes e importantes de la lógica matemática, a partir del teorema de Cantor, a través del estatus del axioma de elección y la cuestión de la independencia de la hipótesis del continuo, al debate moderno sobre grandes axiomas cardinales. 

 La teoría de la recursión captura la idea de la computación en términos lógicos y aritméticos. Sus logros más clásicos son la indecidibilidad del Entscheidungsproblem de Alan Turing y su presentación de la tesis de Church-Turing. Hoy en día, la teoría de la recursión se ocupa principalmente del problema más refinado de las clases de complejidad (¿cuándo es un problema eficientemente solucionable?) y de la clasificación de los grados de insolubilidad.

No hay comentarios:

Publicar un comentario